Review

Antiplasmodial activity of various parts of *Phyllanthus niruri* according to its geographical distribution

P. Njomnang Soh\(^1,2\), J. T. Banzouzi\(^3,4\), H. Mangombo\(^5\), M. Lusakibanza\(^5\), F. O. Bulubulu\(^6\), L. Tona\(^5\), A. N. Diamuini\(^6\), S. N. Luyindula\(^6\) and Françoise Benoit-Vical\(^1,2\)*

\(^1\)Parasitology-Mycology Department, Rangueil Hospital University, TSA 50032, 31059 Toulouse 9, France & University of Toulouse, 31059 Toulouse Cedex 9, France.
\(^2\)CNRS ; LCC UPR8241; 205, route de Narbonne, F-31077 Toulouse, France AND University of Toulouse ; UPS, LCC ; F-31077 Toulouse, France.
\(^3\)ICSN-CNRS UPR2301, 91198 Gif-sur-Yvette cedex, France.
\(^4\)CERMA, Médecins d’Afrique, BP 45, Brazzaville, Congo.
\(^5\)Pharmacology Laboratory, University of Kinshasa, RD Congo.

Accepted 15 October, 2009

Extracts of *Phyllanthus niruri* L., collected from three different areas in the Congo (Kisantu, Kimwenza and University of Kinshasa), used for malaria treatment were tested *in vitro* in order to evaluate their antiplasmodial properties. Whereas the whole plant is traditionally used, aqueous extracts of the various parts of the *P. niruri* plant (stems, leaves and roots) tested on the chloroquine-resistant strain FcM29-Cameroon showed that only the leaves and the stems presented real *in vitro* antiplasmodial activity without any cytotoxicity. This information is particularly important because the leaves are affordable and their use is less damaging to plant stocks.

Key words: Ethno-pharmacology, *Plasmodium falciparum*, harvest areas, parts of plant.

INTRODUCTION

Malaria is a public health problem in tropical and subtropical regions. WHO estimates the number of clinical cases to be between 300 and 500 million, with more than 2 million deaths annually (WHO, 2003). The search for new antimalarial drugs with new modes of action is urgently needed and the ethno-pharmacological approach is a very interesting resource by which new therapies may be discovered.

The Democratic Republic of Congo (DRC), located in one of the richest floristic zones of Africa (Guineo-congolian zone) has an ancient cultural tradition of knowledge and use of medicinal plants. Among the plants used in this country for the treatment of malaria and its associated symptoms, we selected the plant *Phyllanthus niruri* for study, in collaboration with local traditional healers by ethnobotanical surveys. This plant is used for antimalarial treatment in all areas of the DRC and in other countries of Africa and Asia but its availability is drastically decreasing because of numerous harvests. In the DRC, local treatment against malaria or its associated symptoms consists of using a decoction of the whole plant with a mixture of roots, stems and leaves of *P. niruri*.

The objective of this study was to screen the *in vitro* antiplasmodial activity and the cytotoxicity of aqueous and ethanolic extracts of different parts (roots, stems and leaves) of *P. niruri* coming from 3 areas (Kisantu, Kimwenza and UNIKIN) of the DRC.

RESULTS AND DISCUSSION

Phyllanthus niruri L. (Syn. *P. fraternus* Webster), Euphorbiaceae, is a common weed found in both cultivated fields and wasteland. *P. niruri* is also a well-known medicinal herb that is traditionally and widely used in Asia, Africa and South America. This plant is
tradiitinally used as an anti-hepatotoxic or anti-hypertensive, but it is more often used as anti-infective and principally against malaria. In vitro studies have confirmed these indications since P. niruri extracts showed therapeutic effects such as anti-hepatotoxic (Syamasundar et al., 1985), anti-HIV (Ogata et al., 1992), anti-hepatitis B (Venkateswaran et al., 1987) and antimalarial (Tona et al., 2004).

The local practice for malaria treatment by the population of the DRC with P. niruri consists essentially in using an extract of the whole plant (mixture of leaves, stem and root). The antimalarial activity assays (Table 1) showed that the ethanolic extract of the whole plant gave an IC₅₀ of 26 µg/ml on the reference Plasmodium strain FcM29-Cameroun. This value is higher than that one already reported (Tona et al., 2004) who presented an IC₅₀ value of 2.5 µg/ml. The difference between both IC₅₀ values could be explained by the fact that we carried out the antimalarial tests on continuous laboratory cultures whereas Tona’s team used isolates, directly obtained from the blood of adult subjects with acquired P. falciparum infection in endemic areas. Our value of 26 µg/ml is in the same range as crude extracts from other plants traditionally used in this area against malaria and also tested on continuous laboratory cultures such as Momordica balsamina, Cogniauxia podoloea, Uapaca paludosa, Vernonia brazzavillensis (Benoit-Vical et al., 2006; Mbatchi et al., 2006; Zirihi et al., 2005; Menan et al., 2006).

The most interesting result was to prove that whatever the cultivation area and for both solvent of extractions, the leaves of P. niruri were effective in vitro against Plasmodium with IC₅₀ ranging from 14 - 19 µg/ml for the aqueous extract and from 19 - 25 µg/ml for the ethanolic extract. Close results have been obtained, concerning the antimalarial activity of stems and leaves of the species P. reticulatus against different strains of P. falciparum (1 µg/ml < IC₅₀ < 25 µg/ml) (Omulokoli et al., 1997). In parallel, all the aqueous extracts of stems, regardless of the source area showed interesting in vitro antimalarial efficacy (IC₅₀ ranging from 11 - 16 µg/ml). On the contrary, our results showed that the ethanolic extract of only stems harvested in the Kimwenza zone (IC₅₀ = 22 µg/ml) were effective whereas those from the stems harvested in both Kisantu and UNIKIN were devoid of in vitro antimalarial activity (IC₅₀ ranging from 50 µg/ml > 50 µg/ml).

<table>
<thead>
<tr>
<th>Plant part tested (area) †</th>
<th>Extraction solvents a</th>
<th>Extraction yield (%)</th>
<th>IC₅₀ (µg/ml) against Plasmodium c</th>
<th>IC₅₀ (µg/ml) on cell lines: KB / Vero d</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. niruri stems (Kimwenza)</td>
<td>Ethanol</td>
<td>5.8</td>
<td>22 ± 4 e</td>
<td>100 / >100 e</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>10.3</td>
<td>14 ± 4</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri stems (Kisantu)</td>
<td>Ethanol</td>
<td>3.8</td>
<td>>50</td>
<td>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>6.5</td>
<td>>11 ±2</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri stems (UNIKIN)</td>
<td>Ethanol</td>
<td>5.8</td>
<td>>50</td>
<td>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>8.9</td>
<td>16 ± 0</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri leaves (Kimwenza)</td>
<td>Ethanol</td>
<td>17.7</td>
<td>25 ± 4</td>
<td>85 / 100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>16.7</td>
<td>19 ± 3</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri leaves (Kisantu)</td>
<td>Ethanol</td>
<td>6.5</td>
<td>19 ± 0</td>
<td>75 / 100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>11.4</td>
<td>14 ± 1</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri leaves (UNIKIN)</td>
<td>Ethanol</td>
<td>13.9</td>
<td>22 ± 5</td>
<td>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>18.8</td>
<td>16 ± 1</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri roots (Kimwenza)</td>
<td>Ethanol</td>
<td>5</td>
<td>>50</td>
<td>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>6.3</td>
<td>>50</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri roots (Kisantu)</td>
<td>Ethanol</td>
<td>3</td>
<td>>50</td>
<td>>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>6.2</td>
<td>>50</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri roots (UNIKIN)</td>
<td>Ethanol</td>
<td>5.1</td>
<td>19 ± 0</td>
<td>100 / >100</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>4.3</td>
<td>>50</td>
<td>>100 / >100</td>
</tr>
<tr>
<td>P. niruri whole plant</td>
<td>Ethanol</td>
<td>ND</td>
<td>26 ± 11</td>
<td>ND</td>
</tr>
<tr>
<td>Chloroquine (antimalarial drug control) a</td>
<td>Ethanol</td>
<td>290.10⁻³ µM</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Artemisinin (antimalarial drug control) a</td>
<td>Ethanol</td>
<td>7.10⁻³ µM</td>
<td>>300 µM</td>
<td></td>
</tr>
<tr>
<td>Taxotere (anticancer drug control) a</td>
<td>Ethanol</td>
<td>ND</td>
<td>2.5.10⁻⁶ mΜ</td>
<td></td>
</tr>
</tbody>
</table>
extracts of the root of *P. reticulates*, another species, from the western province of Kenya were also inactive (IC$_{50}$ > 100 µg/ml) against chloroquine-sensitive and chloroquine-resistant strains of *P. falciparum* (Omulokoli et al., 1997).

Out of all the extracts tested in the present study, the water extraction showed better results than ethanolic extraction. This information is particularly important because water is the extraction solvent used the most (and often the only one available) in traditional medicine in endemic areas. It is important to note that the water extracts that had the highest antiplasmodial activities also gave the best extraction yields (Table 1).

The fact that the leaves alone, but also some stem extracts, were active in vitro, means that it is possible to harvest only these plant parts for malaria treatment without destroying the whole plant (in particular the roots).

However, even if only the leaves and stems are active in vitro against *Plasmodium*, it would be very interesting to carry out further investigations on the pharmacological effects of roots during antimalarial treatment. Indeed, some plants (or parts of plants), without direct activity against the parasite, can show properties that could be acting on the symptoms of malaria (fever, anemia, hypoglycemia, etc.), and/or increase the bio-availability and/or enhance immunological stimulation in vivo (Benoit-Vical, 2005).

We have found in our study a weak in vitro cytotoxicity on 2 reference cell-lines (KB and Vero) of these extracts with IC$_{50}$ values ranging from 75 µg/ml to largely superior to 100 µg/ml leading to promising security indexes. Furthermore, this low in vitro cytotoxicity is confirmed by the frequent use of *P. niruri* extracts in indigenous medical systems for a considerable time in the DRC with no evidence of clinical toxicity while ethnobotany surveys also exclude pronounced human toxicity.

Phyllanthus niruri pharmacognosy researches showed the presence of alkaloids (Singh et al., 1991), and lignans (Huang et al., 1992). Some of these compounds, such as phyllanthin, and hypophyllanthin, have been reported to be hepatoprotective (Syamasundar et al., 1985) whereas niruriside appears to be a specific inhibitor of HIV replication (Qian-Cutrone et al., 1996). Lastly, four lignans (phyllanthin, hypophyllanthin, phyltetralin and niranthin) were found in these plant samples, with the highest amount of lignans found in the leaves and the least amount in the roots (Murugaiyaha and Chan, 2007). This confirms the importance of the leaves in future studies of this plant in the search for the molecules responsible for the antimalarial activity.

Conclusion

The aim of this manuscript was to make a transverse study on the relation antiplasmodial activity / biotope for *P. niruri* extracts. The low cytotoxicity and the antiplasmodial efficacy of *P. niruri*, principally the aqueous extracts, against *Plasmodium in vitro* validates the wide use of this plant in traditional medicine against malaria in the DRC, and other countries of sub-Saharan Africa where malaria is endemic. The biological activity of the leaves is particularly important for the biodiversity of this plant because leaves are affordable and their use does not damage the plants and limit the supply as the use of the roots would.

Moreover, the promising results of the aqueous extracts of leaves of *P. niruri* whatever the geographical region that was harvested indicate that the chemical fingerprints seem to be reproducible for this part of this plant. This justifies our continuing research to firstly fractionate leaf extracts to determine the active principles responsible of this antiplasmodial activity.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the IAEA (International Atomic Energy Agency) for their scientific and financial support (Grant ZAI06003). Dr John Woodley and Mrs. Geneviève Aubert (Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette, France) are also acknowledged for editing the English of this manuscript and for the cytotoxicity assays, respectively. P. Njomnang Soh(PNS) and J.T. Banzouzi(JTB) have contributed equally to this manuscript.

Footnotes

a: The various parts of *Phyllanthus niruri* were harvested from January to April in the rainy season respectively by Nzeea, A. Carlier and Mukendi in 3 different areas of the Democratic Republic of Congo (Kisantu, UNIKIN, Kimwenza) where this plant is used for its antiplasmodial properties. The locality UNIKIN corresponds to the neighborhood of the University of Kinshasa. The distances between Kisantu and Kimwenza, between UNIKIN and Kimwenza, and between Kisantu and UNIKIN are 116, 4 and 120 km respectively. The botanical identification was assured by Mr Nlandu of the herbarium samples were deposited at the herbarium under the numbers respectively 72 bis (Kisantu), 66 (Kimwenza) and 83 (UNIKIN). The fresh plant material was dried on mats on the floor at ambient temperature, avoiding direct sunlight. Once dried, the plants were crushed and packaged before being sent to France for extraction and biological testing.

b: The various parts of the plant were extracted in water and ethanol according to the traditional methods of pre-
paration. Ethanol extracts were obtained by simple maceration of 30 g of powder in 300 ml of ethanol over 24 h. The operation was repeated twice on the residues. The three successive extracts were mixed together and then concentrated at reduced pressure at 35°C until a syrupy liquid was obtained. This liquid was taken up in 20 ml of distilled water and then freeze-dried to obtain a homogeneous dry extract. Aqueous extracts were prepared by simple decoction of 5 g of plant powder in 50 ml of boiling distilled water. The mixture was boiled for 10 min before being filtered through filter paper, and then centrifuged at 3000 rpm for 20 min. Each aqueous extract thus obtained was freeze-dried and stored at -20°C before the pharmacological tests.

c: The antiplasmodial activity was evaluated on the chloroquine-resistant (IC_{50} for chloroquine of 400 nM) strain FcM29-Cameroon (Soh et al., 2009). Parasites were cultured according to the procedure of Trager and Jensen (Trager and Jensen, 1976) with modifications (Benoit et al., 1995). The antiplasmodial activity of the *P. niruri* extracts was evaluated three times in triplicate by the radioactive microdilution method described by Desjardins et al (Desjardins et al., 1979) and modifications (Benoit-Vical et al., 2007).

d: The cytotoxicity of *P. niruri* extracts was assayed against KB (human epidermoid carcinoma) and Vero (monkey African green kidney) cells according to the methodology of Mbatchi et al (Mbatchi et al., 2006).

e: IC_{50} in µg/ml ± sd (standard deviation) obtained from at least 3 independent experiments.

f: not determined.

g: molecules routinely tested as control.

REFERENCES

